
 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc 22001155 pppp.. 110033--110066 IImmppaacctt FFaaccttoorr 22..88 available online at www.csjournalss.com

AA UUGGCC RReeccoommmmeennddeedd JJoouurrnnaall

Page | 103

AA NNoovveell TTeecchhnniiqquuee ttoo IImmpprroovvee SSoorrttiinngg PPrroocceedduurree

KKaarraammjjeeeett KKaauurr

UUnniivveerrssiittyy CCoolllleeggee,, KKuurruukksshheettrraa UUnniivveerrssiittyyKKuurruusshhttrraa,, IInnddiiaa 113366111199

Abstract: Most of the present day applications are database dependent. Some of the examples are telephone directory, list of

students, list of employees in an organization, database in doctor’s clinic etc. The users of these applications want the data in some

specified order that may be numerical or lexicographical. Sorting algorithms in computer science sort the data in some order

(increasing or decreasing). These algorithms sort the data stored in database based on its primary key or any other key value. The
order may be numerical or lexicographical. This paper presents a new sorting algorithm that is easy to implement and well efficient.

Here, a new algorithm is proposed which is analyzed, implemented and , then, compared with bubble sort, insertion sort and the

outcome is positive.

Index Terms: Sorting, Average Case, Swap, Comparison, Stability, Complexity.

1. INTRODUCTION

Information growth rapidly in our world and to search for

this information, it should be ordered in some sensible

order[9]. Information is stored in form of data .

Symmetrical form of data is always better than

asymmetrical one. We always want to arrange

information in some order so that manipulation and

searching of this information is easy and efficient. But

what to do if the data is not in any specified order. One

answer is sorting the data. Sorting is very common

problems handled by computers. Computers performs

sorting(arranging data in a specific order) of data by

using sorting algorithms.. Since computers can compare a

large number of items quickly, they are quite good at

sorting.

There are many sorting algorithms available that puts the

input data in a specified order. Most used orders are

numerical order and lexicographical order. Efficient

sorting is important for optimizing the use of other

algorithms (such as search and merge algorithms) that

require sorted lists to work correctly. It is also often

useful for canonicalizing data and for producing human-

readable output. More formally, the output must satisfy

two conditions[9]:

The output is in no decreasing order (each element is no

smaller than the previous element according to the

desired total order);

The output is a permutation, or reordering, of the input.

since the dawn of computing, the sorting problem has

attracted a great deal of research, perhaps due to the

complexity of solving it efficiently despite its simple,

familiar statement. For example, bubble sort was

analyzed as early as 1956[2].

 Sorting algorithms have become center of researcher’s

attractions because:-

Most database based applications use sorting algorithms

to provide information to their users in a pattern in which

searching & manipulation of information is easy.

Many algorithms use sorting algorithms that require

sorted lists to work correctly.

There are many sorting algorithms available to solve a

problem and one has to choose the efficient one based on

some criteria. In [9,3] they are classified by

computational complexity (worst, average and best

behavior Computational complexity of element

comparisons in terms of the size of the list (n). For typical

sorting algorithms good behavior is o(n log n) and bad

behavior is o(n
2
).Ideal behavior for a sort is o(n), but this

is not possible in the average case. Comparison-based

sorting algorithms, which evaluate the elements of the list

via an abstract key comparison operation, need at least

o(n log n) comparisons for most inputs.

Computational complexity of swaps(for "in place"

algorithms).

Memory usage (and use of other computer resources):-.

In particular, some sorting algorithms are "in place".

Strictly, an in place sort needs only o(1) or o(log(n))

memory beyond the items being sorted; sometimes

o(log(n)) additional memory is considered "in place".

Recursion:. Some algorithms are either recursive or non-

recursive, while others may be both

Stability:-stable sorting algorithms maintain the relative

order of records with equal keys

Enhanced Insertion Sort.:a Enhanced Insertion Sort

examines the data only by comparing two elements with

a comparison operator.

General method:insertion, exchange, selection, merging,

etc.. Exchange sorts include bubble sort and quicksort.

Selection sorts include shaker sort and heap-sort.

Adaptability: whether or not the pre-sortedness of the

input affects the running time. Algorithms that take this

into account are known to be adaptive.

In this paper a new sorting algorithm is presented. It is

very easy to implement & efficient. It is compared to

bubble sort, insertion sort, selection sort & results shows

that it is easier to implement than insertion sort, selection

sort and efficient than bubble sort and insertion sort. The

concept of the algorithm is explained in section 2. The 3
rd

Section represents the steps of algorithm. This paper also

presents a derivation for running time in section 4. An

example implementation is given in section 5 .a

comparison of compare algorithm with other sorting

algorithms(insertion sort, selection sort, bubble sort) is

presented in section 6. Section 7 concludes the study

followed by references.

 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc 22001155 pppp.. 110033--110066 IImmppaacctt FFaaccttoorr 22..88 available online at www.csjournalss.com

AA UUGGCC RReeccoommmmeennddeedd JJoouurrnnaall

Page | 104

2.CONCEPT

 In this algorithm two adjacent elements are compared

and then swapped on if second one is smaller than first

one(for sorting in increasing order). Elements are inserted

and then sorted in the same array without using any extra

space(except element temp which is used in swapping).

This concept makes sorting easier than selection sort and

insertion sort algorithms and reduces number of swaps,

comparisons than selection sort and bubble sort

algorithm.

3.ALGORITHM

Enhanced Insertion Sort(a,n)

this algorithm sorts n elements of array a.

step 1:- set a[0]= -∞

step2:-repeat steps 3 to 4 for k=2,3….n

step3:-ptr=k-1;

step4:-repeat while (a[k]<a[ptr])

(a):- swap a[k] & a[ptr]

(b):-k=ptr, ptr=ptr-1

step5:-exit.

4.PSEODOCODE AND RUNNING TIME ANALYSIS

OF ALGORITHM

The efficiency of an algorithm depends on its use of

resources, such as:

The time it takes the algorithm to execute;

The memory it uses for its variables;

The network traffic it generates;

The number of disk accesses it makesetc.

The proposed work is going to focus pretty much

exclusively on time.

Pseudocode and corresponding cost factor of each line

with the no of times a line executes is given below

CODE COST TIME

1. FOR J-> 2TO INDEX DO C1 n

{BEGINE FOR}

2.PTR->N-1 C2 n-1

3.WHILE(A(PTR)>A(J) C3 ∑tJ

{BEGIN WHILE}

4.TEMP=A(J) C4 tj-1

5.A(J)=A(PTR) C5 tj-1

6.A(PTR)=TEMP C6 tj-1

7.J=PTR tj-1

8.PTR=PTR-1 tj-1

{END WHILE}

{END FOR}

HERE tj=Number of times while loop executes for j

T(N)=C1N+(C2 – C4 – C5 – C6 - C7 - C8)(n-1) +(C3+ C4 +

C5 + C6 + C7 + C8)(∑tJ)………….eq.(1)

For calculating running time following should be done:

First consider only leading terms and ignore lower order

terms because they become insignificant for large N.

Secondly ignore constant factor cost because it is also

less significant than rate.

Running time for average case

If the input array is unsorted then

If j=2 then 2 comparisons takes place,

if j=3 then 3 comparisons takes place.

So, for each j the number of comparisons is equal to

Total number of expected comparison:-

 =

= 2/)1(
22

nj

j

nj

j

j

=((n
2
+n-2)/2 +(n-1))/2

=(((n
2
+n-2)/4)+((n-1)/2))

=(n
2
+3n-4)/2

By using above expression in equation (1), the running

time, T(n)=o(n
2
)

Running time for average case

In this case the input array is already sorted. So only one

key comparison is needed for each j. In this case,

11
22

ntj
nj

j

nj

j

By using above expression in equation (1) , running time,

T(n)=o(n)

Running time for average case

In this case the input array is sorted in reverse order. So j

number of key comparisons are needed for each j. In this

case

nj

j
tj

2
=

nj

j

j
2

=(n
2
+n-2)/2

By using above expression in equation, running time,

T(n)=o(n
2
).

The following time table shows the run-time summary of

Enhanced Insertion Sort algorithm

Criteria Run-time

Best case O(n).

Average case O(n
2
).

Worst case O(n
2
).

5. EXAMPLE IMPLEMENTATION OF COMPARE

SORT

In following example the two adjacent underlined

elements show a comparison and there will be a swap if

later element is smaller than former one.

 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc 22001155 pppp.. 110033--110066 IImmppaacctt FFaaccttoorr 22..88 available online at www.csjournalss.com

AA UUGGCC RReeccoommmmeennddeedd JJoouurrnnaall

Page | 105

INPUT ARRAY IS 30,20,40,41,19,18

STEP-1(I) - ∞, 30, 20, 40, 41, 19, 18

STEP-1(II) - ∞, 20, 30, 40, 41, 19, 18

STEP-2 - ∞, 20, 30, 40, 41, 19, 18

STEP-3 - ∞, 20, 30, 40, 41, 19, 18

STEP-4(i) - ∞, 20, 30, 40, 41, 19, 18

STEP-4(ii) - ∞, 20, 30, 40, 19, 41, 18

STEP-4(iii) - ∞, 20, 30, 19, 40, 41, 18

STEP-4(iv) - ∞, 20, 19, 30, 40, 41, 18

STEP-4(v) - ∞, 19, 20, 30, 40, 41, 18

STEP-5 (i) - ∞, 19, 20, 30, 40, 41, 18

STEP-5(ii) - ∞, 19, 20, 30, 40, 18, 41

STEP-5(iii) - ∞, 19, 20, 30, 18, 40, 41

STEP-5(ii) - ∞, 19, 20, 18, 30, 40, 41

STEP-5(iv) - ∞, 19, 18, 20, 30, 40, 41

STEP-5(v) - ∞, 18, 19, 20, 30, 40, 41

SHORTED ARRAY 18, 19, 20, 30, 40, 41

 At the end of step 5 the output is a sorted array (in

increasing order)

18, 19, 20, 30, 40, 41

6. COMPARISON WITH SOME SORTING

ALGORITHMS

Following table shows the comparison of all three cases

of Enhanced Insertion Sort, selection sort and bubble sort

Name of

algo.

Average

case

Best

case

Worst

case

Memory

Enhanced

Insertion

Sort

O(n
2
) O(n) O(n

2
) O(1)

Bubble

sort

O(n
2
) O(n

2
) O(n

2
) O(1)

Selection

sort

O(n
2
) O(n

2
) O(n

2
) O(1)

Insertion

sort

O(n
2
) O(n) O(n

2
) O(1)

Although the running time of Enhanced Insertion Sort is

same as that of insertion sort but implementation of

Enhanced Insertion Sort is easier then insertion sort as

because:

In insertion sort, the elements are to be shifted for making

the right place of element j in j
th

iteration but in the new

purposed sorting algorithm, just two elements have to be

compared and then swap them if necessary.

Swapping after comparison is easier than making the

track of element at proper place by shifting

elements(forward or backward according to condition)

Following table shows the comparison with bubble sort

and selection sort in terms of swaps and comparisons on

following array

20,30,29,28,50,14,13,12,21,11,22,9,33,32,34,36,35,38,39

,37,31,40,41,49,48,47,2,3,46,4,42,43,45,44,8,7,10,15,6,1

6,17,15,18,19,24,23,25,27,26

Name Criteria Elements Comparison Swaps

Enhanced

Insertion

Sort

Average 50 654 631

 Best 50 49 0

 Worst 50 1274 1225

Bubble

sort

Average 50 1225 629

 Best 50 1225 0

 Worst 50 1225 1225

Selection

sort

Average 50 1270 45

 Best 50 1250 0

 Worst 50 1250 25

Insertion

sort

Average 50 696 647

 Best 50 49 0

 Worst 50 1274 1225

Graph 1

As shown in graph 1 the enhanced insertion sort

consumes less number of comparisons when applied on

an unsorted array.

7. CONCLUSION

In this paper a new sorting algorithm has been presented.

Enhanced Insertion Sort has complexity o(n
2
) but it

requires less number of comparisons than bubble sort,

selection sort. Enhanced insertion sort is easier in

implemention terms than insertion sort. Mainly it bridges

the gap between easiness and complexity, and improves

number of comparisons and swaps. As number of swaps

and comparisons needed are lesser then some other

existing sorting algorithm(like insertion sort, selection

sort, bubble sort) so enhanced insertion sort improves

searching by taking lesser amount of time.

Comparison in Average Case

0

200

400

600

800

1000

1200

1400

Enhanced Insertion Sort Bubble sort Selection sort Insertion sort

sorting tech

c
o

m
p

a
r
is

o
n

s

Number of Comparisons

 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc 22001155 pppp.. 110033--110066 IImmppaacctt FFaaccttoorr 22..88 available online at www.csjournalss.com

AA UUGGCC RReeccoommmmeennddeedd JJoouurrnnaall

Page | 106

8. References
[1]. Weiss M., Data Structures and Problem Solving Using Java, Addison Wesley, 2002.

[2]. Demuth, H. Electronic Data Sorting. PhD thesis, Stanford University, 1956

[3]. Aho A., Hopcroft J., and Ullman J., The Design and Analysis of Computer Algorithms, Addison Wesley, 1974.

[4]. Box R. and Lacey S., “A Fast Easy Sort,” Computer Journal of Byte Magazine, vol. 16, no. 4, pp. 315-315, 1991.
[5]. Cormen T., Leiserson C., Rivest R., and Stein C., Introduction to Algorithms, McGraw Hill, 2001.

[6]. Deitel H. and Deitel P., C++ How to Program, Prentice Hall, 2001.

[7]. Astrachanm O., Bubble Sort: An Archaeological Algorithmic Analysis, Duk University, 2003.

[8]. Friend E., “Sorting on Electronic Computer Systems,” Computer Journal of ACM, vol. 3, no. 2, pp. 134-168, 1956.
[9]. The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010 55 An Enhancement of Major

Sorting Algorithms JehadAlnihoud and Rami Mansi Department of Computer Science, Al al-Bayt University, Jordan

[10]. Bell D., “The Principles of Sorting,” Computer Journal of the Association for Computing Machinery, vol. 1, no. 2, pp. 71-

77, 1958.
[11]. Knuth D., The Art of Computer Programming, Addison Wesley, 1998.

[12]. Ledley R., Programming and Utilizing Digital Computers, McGraw Hill, 1962.

[13]. Levitin A., Introduction to the Design and Analysis of Algorithms, Addison Wesley, 2007.

[14]. Nyhoff L., An Introduction to Data Structures, Nyhoff Publishers, Amsterdam, 2005.
[15]. Kruse R., and Ryba A., Data Structures and Program Design in C++, Prentice Hall, 1999.

[16]. Organick E., A FORTRAN Primer, Addison Wesley, 1963.

[17]. Pratt V., Shellsort and Sorting Networks, Garland Publishers, 1979.

Authors’ Profiles

Karamjeet Kaur is working as assistant professor in computer science in university college,

KUK, India for last Two years. She has completed her post graduation from Kurukshetra

University. She is NET qualified and her area of interest are Algorithm development , Networks

and Data structure.

